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Abstract
I consider a physical system described by a continuous field theory and enclosed
in a large but finite cubical box with periodic boundary conditions. The system
is assumed to undergo a continuous phase transition at some critical point. The
ϕ4 theory that is a continuous version of the Ising model is such a system but
there are many other examples corresponding to higher spin, higher symmetry
etc. The eigenfunctions of the corresponding Fokker–Planck (FP) operator can
be chosen, of course, to be eigenfunctions of the momentum operator. It is
shown that the eigenvalues of the FP operator, corresponding to each eigenvalue
q of the momentum operator, evaluated at a transition point of the finite system,
accumulate at zero, when the size of the system tends to infinity. There are
many reasonable ways of defining a critical temperature of a finite system,
which tends to the critical temperature of the infinite system as the size of the
system tends to infinity. The accumulation of eigenvalues is neither affected by
the specific choice of critical temperature of the finite system nor by whether
the system is below or above its upper critical dimension.

PACS numbers: 05.70.Fh, 05.50.+q

1. Introduction

The property of critical slowing down [1, 2] is known for a long time from experimental
[3–7] and numerical work [8–11]. The quantitative description is in terms of characteristic
decay times or alternatively ‘characteristic frequencies’ ωq, which govern the decay of a
disturbance of wave vector q. It was found that at the transition, ωq behaves as some positive
power of q, ωq ∝ qz. This implies that the larger the scale of the disturbance the longer
it takes to decay and a divergent scale results in a divergent decay time. The evaluation of
the exponent z was the subject of theoretical work using a number of different approaches
but all are based on stochastic field equations of the Langevin type to describe the dynamics
of the system [12–18]. More recently, it was suggested that not only do the characteristic
frequencies tend to zero with q but the decay function itself becomes slower than an exponential
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(e.g., stretched exponential) for long times, ωqt � 1 [19–21]. This property was shown to
hold for quite general Langevin field equations including, in addition to critical dynamics,
equations of the KPZ type. The derivation of stretched exponential decay or any other form
of slow decay has to rely on approximations. As will become evident later (equation (12))
the time-dependent structure factor needs evaluations of the eigenstates and eigenvalues of a
‘quantum field Hamiltonian’ (equation (10)) obtained by a standard similarity transformation
from the corresponding Fokker–Planck (FP) operator. The accuracy with which these have
to be evaluated has to increase with the time argument of the structure factor. Therefore, the
problem of very long time decay is extremely difficult and it is important to have as many
exact results as possible in support of approximate derivations. From equation (12) it will
become clear also that a necessary condition for slow decay of a disturbance of wave vector q
is to have ‘enough’ eigenvalues corresponding to states carrying momentum q in the vicinity
of zero. It has been shown in a recent publication [20] that there must exist an eigenvector of
the FP operator, at the transition point, that carries momentum q and has an eigenvalue that is
as close as we wish to zero. In the present paper, I go beyond that and show that for each q the
eigenvalues of the FP operator accumulate at zero for the infinite system. The proof I present
relies on the simplest established lowest order results of finite size scaling equilibrium theory
and does not involve even the next order corrections such as the dependence of a properly
chosen critical temperature of the finite system on its size [22, 23]. To my knowledge, those
results have never been proved rigorously. Nevertheless their use as conjectures in the present
proof yields information about a non-equilibrium problem that is considerably more difficult
and that information is exact provided that those widely accepted equilibrium results are indeed
correct.

2. Time dependent structure factor

Consider a system described in terms of a scalar field ϕ and enclosed in a cube with periodic
boundary conditions. The static statistical properties of the system are assumed to be given by
the Gibbs distribution, Peq ∝ exp[−W ], where W is the classical dimensionless Hamiltonian
of the system. I have in mind Hamiltonians that are even functionals of the field and are
generalizations of the ϕ4 theory that in terms of Fourier components of the field has the form

W = 1

2

∑
(r0 + q2)ϕqϕ−q +

u

�

∑
ϕl1ϕl2ϕl3ϕ−(l1+l2+l3) (1)

where the Fourier components of the field are defined by

ϕq = 1√
�

∫
ϕ(r) exp(−iq · r) dr (2)

and � is the volume of the system. The momentum indices are assumed to be bound from
above by some high momentum cut-off and their allowed values are given by

q = 2πn
L

(3)

where L is the linear size of the system and n a vector of integers. The following discussion and
the proof I present are not limited, however, to the above typical model. The discussion clearly
covers other systems with different dependences of W on the field (e.g. systems describing
higher spins) or systems in which the field is not a scalar (e.g. systems with O(n) symmetry).
As will become evident, the only property that I use is that there is a critical point in the large
volume limit and at that point and in that limit the structure factor 〈ϕqϕ−q〉 or its analogue in
the case of vector fields, diverges at small q as q is raised to a power smaller than −1.
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The dynamics is assumed to be described in terms of a set of Langevin field equations

dϕq

dt
= −γ

∂W

∂ϕ−q
+ ηq (4)

where the noise ηq obeys

〈ηq(t)〉 = 0 and 〈ηq(t)η−q(t
′)〉 = 2γ δ(t − t ′). (5)

A standard procedure leads to the Fokker–Planck equation for the probability distribution of
the fields, P ,

∂P

∂t
= γ

∑
q

∂

∂ϕq

[
∂

∂ϕ−q
+

∂W

∂ϕ−q

]
P ≡ OP (6)

where O is the FP linear operator. The distribution at equilibrium, Peq, is the eigenstate of the
Fokker–Planck operator, O, with eigenvalue zero. It follows directly from equation (6) that

Peq ∝ exp[−W ] (7)

is the Gibbs distribution.
I will be interested in the time-dependent structure factor 〈ϕ−q(0)ϕq(t)〉, where the

meaning of the average is as follows: ϕ−q is measured at time t = 0 at equilibrium, the
system is then allowed to evolve freely and ϕq is measured at time t. The mathematical form
of the above statement is

〈ϕ−q(0)ϕq(t)〉
∫

Dϕ1Dϕ2ϕ1
−qPeq{ϕ1}ϕ(2)

q P {ϕ(2);ϕ(1), t} (8)

where Peq is normalized and P {ϕ(2);ϕ(1), t} is the solution of the Fokker–Planck equation (5)
for a distribution in the variables ϕ(2) with initial condition

P {ϕ(2);ϕ(1), 0} =
∏

l

δ
(
ϕ

(2)
l − ϕ

(1)
l

)
. (9)

A standard transformation, P = P
1/2
eq ψ , which induces a similarity transformation on O,

brings the Fokker–Planck equation (6) and definition (8) into forms more familiar from
quantum mechanics

∂ψ

∂t
= γ

∑
q

[
∂

∂ϕq
− 1

2

∂W

∂ϕq

] [
∂

∂ϕ−q
+

1

2

∂W

∂ϕ−q

]
ψ ≡ −Hψ (10)

and

〈ϕ−q(0)ϕq(t)〉 = 〈0|ϕ−q exp[−Ht]ϕq|0〉. (11)

The ‘Hamiltonian’, H, obtained by the similarity transformation from O, is Hermitian and all
its eigenvalues are positive apart from the eigenvalue zero, which corresponds to the ground
state |0〉. Since the system is translationally invariant, H commutes with the momentum
operator so that the eigenstates of H can be chosen to carry definite momenta.

Let {|nq〉} be the set of eigenstates of H carrying momentum q and {λnq} the
corresponding eigenvalues. It is easily verified that

〈ϕ−q(0)ϕq(t)〉 =
∑

|〈n−q|ϕq|0〉|2 exp[−λnqt]. (12)

(This follows from the fact that ϕq|0〉 is an eigenstate of the momentum operator with
momentum q.) The spectrum of H limited to the states {|nq〉}, {λnq}, has thus direct bearing
on the decay of the time-dependent structure factor. For example, if the spectrum {λnq} has a
gap �q, the decay of the time-dependent structure factor is faster than e−�qt .
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Let us define next

ρq(λ) =
∑

|〈nq|ϕq|0〉|2δ(λnq − λ)/〈ϕ−q(0)ϕq(0)〉. (13)

The time-dependent correlation function can be written as

〈ϕ−q(0)ϕq(t)〉 = 〈ϕ−q(0)ϕq(0)〉
∫ ∞

0
dλ ρq(λ) exp[−λt]. (14)

It is clear that, for a finite system, it will always be possible to find a region λ > 0 including
the origin and depending on the size of the system, such that ρq(λ) vanishes identically in
that region, implying a decay in time that is faster than some exponential. This may be
characterized by a lifetime that depends on the size of the system. The question is how does
ρq(λ) behave in the limit of an infinite system. If in that limit ρq(λ) does not vanish too
fast as λ tends to zero, the decay will be slower than exponential (e.g. stretched exponential,
power law etc.). The definition of ρq(λ) implies that in order for it not to vanish too fast as
λ tends to zero two conditions have to be met. First, the eigenvalues λnq have to accumulate
at zero as the size of the system tends to infinity. The second condition is that the matrix
elements in equation (13) do not vanish too fast as the corresponding eigenvalues tend to zero.
The actual long time dependence of the decay is strongly affected by the behaviour of those
matrix elements. The accumulation of eigenvalues to be discussed next is thus a necessary
condition for slow decay but it does not determine the form of the decay. In fact, it is not even
sufficient. The structure factor in the linear system to be discussed in the following as a prelude
to the general case decays exponentially in spite of the relevant eigenvalues accumulating at
zero. The reason is that

∣∣n(1)
q
〉 = ϕq|0〉/〈ϕqϕ−q〉1/2 is an exact normalized eigenstate of the

Hamiltonian so that apart from the matrix element
〈
n(1)

q
∣∣ϕq|0〉 all other matrix elements in

equation (12) vanish. The proof I will present concerns only the first necessary condition that
as the size of the system tends to infinity the eigenvalues of O accumulate at zero for each q.
This has no bearing on the actual form of long time decay.

3. Equilibrium correlations and definitions

The strategy of the proof is as follows: (a) The set of many ‘excitation’ states carrying
momentum q is defined and the corresponding expectation values of the ‘Hamiltonian’ H
are obtained and shown to accumulate at zero for any q. (b) The relation between those
expectation values and the expectation values in an orthogonal set of states corresponding to
the original ‘almost orthogonal’ set of many ‘excitation’ states is outlined. (c) It is shown how
the above implies that the eigenvalues of the ‘Hamiltonian’ carrying momentum q accumulate
at zero.

Before proceeding to the proof in the general case, I will describe first a number of
common results from equilibrium theory that will be used as conjectures in the proof and
define some useful definitions. Then I will show how the accumulation of eigenvalues of H
works for the soluble, linear case. This will give some hints and motivations for the general
nonlinear case.

(1) I keep the value of q fixed (equation (3)) as the size of the system is increased by
considering only multiplication of the original size, L, by an integer.

(2) There are many reasonable ways of defining the critical temperature of the finite
system. It may be taken to be the temperature at which the equilibrium structure factor at
the smallest possible nonzero q is maximal. It may be chosen as the temperature where the
specific heat or one of its derivatives with respect to temperature is maximal. For our purpose
it is enough to choose it as the transition temperature of the infinite system.
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(3) Regardless of the choice of the finite size critical point the structure factor has the
scaling form

〈ϕqϕ−q〉 = Aq−(2−η) for qL � 1 (15)

to leading order in A and for q small compared to the cut-off momentum q0. Note that since
q is kept fixed the condition qL � 1 can always be attained. Note that this is true also above
the upper critical dimension where η = 0 regardless of the fact that hyper scaling does not
hold. Higher order correlation functions will also be needed. I will need

〈
ϕk1 · · ·ϕkm

〉
, where

m is even and
∑

ki = 0 but no subset of the k sums up to zero. For a large finite system, these
correlations have at the critical point the scaling form∣∣〈ϕk1 · · ·ϕkm

〉∣∣ = A(m)
1

Ld(m−2)/2
f (k1, . . . , km) (16)

to leading order in L. For |k| small compared to q0, that also obey |k|L � 1, the function f is
homogeneous. Namely, if we scale all its variables by α, the function of the scaled variables
is related to the function of the original variables by

f (αk1, . . . , αkm) = α−m(1−η/2)f (k1, . . . , km). (17)

The prefactor A(m) is of combinatorial origin and we will need to assume that there exists a
finite b such that ln A(m) < (bm) ln(bm).

(4) A set of momenta, Sk = {l1, . . . , lk}, that can contain, in principle, the same momenta
a number of times, is said to be irreducible if it does not contain real subsets, the momenta of
which sum up to zero.

(5) A set S̄k conjugate to Sk is the set {−l1, . . . ,−lk}.
(6) The sum S1 ⊕ S2 of the sets S1 and S2, contains all momenta appearing in S1 and S2.

The number of times each momentum appears in the sum is the sum of numbers of times it
appears in each set separately.

(7) The many ‘excitation’ set is the set of states of the form

ψq(l1, . . . , lm) =
m∏

i=1

ϕli |0) ≡ �q|0〉 (18)

where
m∑

i=1

li = q

and where the set {l1, . . . , lm} is irreducible.

4. Strategy and the linear case

A ‘physical proof’ would probably proceed along the following lines. First the li are
chosen to equal q/m. Then equations (21) and (22) are used to obtain the corresponding
expectation value, q(2−η)/(Am(1−η)). The third step would be to assert that because of
equation (17), the ‘many excitation’ states form an orthogonal set in the large volume limit (that
is also orthogonal to the ground state at any finite size, because it carries a different momentum),
the eigenvalues of the ‘Hamiltonian’ {λnq} accumulate at zero. The ‘mathematical proof’
proceeds basically along the same lines but has to take into account two difficulties. The first
is that if q is an allowed momentum, q/m is generically not allowed. The second is much
more serious. The assertion that the set of representative states is orthogonal in the large
volume limit is problematic. Many examples exist in which the fact that the scalar products
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of normalized states tend to zero with the size of the system does not imply consequences
expected from orthogonal sets in finite systems.

The proof for the Gaussian case (u = 0) is straightforward. In that case, the states (18)
are exact eigenstates of the ‘Hamiltonian’ H with eigenvalues

λm
q (l1, . . . , lm) = (γ /2)

∑
l2
i . (19)

In the following I will introduce certain restrictions on the size of m, relating it to q. I will
use these restrictions for the Gaussian case as well as for the general one. These do not limit
the final result about the accumulation of the eigenvalues but enable an exact proof under the
conjectures about equilibrium correlation functions at the transition.

For any given q the size of the system can be chosen large enough so that n, the absolute
value of the vector n corresponding to q, is large enough so that after choosing a number
0 < θ < min(1/2, θ0), where θ0 will be specified later (equation (25)), the integers m in
the range (nθ , 1.5nθ ) are large enough so that the following will hold. (a) It is possible to
choose for each m a representative state of the form (18) such that the sizes of the vectors
lmi defining that representative are bound from above by q/(m − 1). (The idea is to choose
all the li as close as possible to q/m since the choice li = q/m for all i yields the lowest
possible value for the eigenvalue in the sector of ‘m excitation’ states. The above obvious
choice is impossible, however, because if q is an allowed momentum q/m is generically not
allowed. The conditions on m ensure that it is possible to choose the li in such a way that
the corresponding eigenvalue (equation (19)) departs in a controlled way from the absolute
minimum of the expression.) (b) Furthermore, the set Sm1 ⊕ Sm2 is irreducible for any m1

and m2 in the range. (Note that this is not required for the proof in the Gaussian case but
will simplify the proof in the general case.) Consequently, the representative eigenvalues are
bound from above

λ0
q,rep(l1, . . . , lm) � (γ /2)

m

(m − 1)2
q2 � (γ /2)

q2

nθ
to leading order in n. (20)

Since n = qL/2π , the meaning of equation (20) is that there are at least 1
2 (qL/2π)θ states with

eigenvalues smaller than (γ /2)
q2

(qL/2π)θ
. Namely, as the size of the system tends to infinity, the

eigenvalues of H accumulate at zero for any q.

5. The general case

The proof for the general case will proceed in two steps. The first is to show that the expectation
values of H in the many ‘excitations’ states (18) accumulate at zero. The second is to show
that this accumulation implies that the eigenvalues of H also accumulate at zero for any q
when the size of the system tends to infinity.

The representative states are exactly those chosen before for the Gaussian case. The
corresponding expectation values of the H are

µq,rep(l1, . . . , lm) = 1

2
〈0|

[
m∏

i=1

ϕ−li ,

[
H

m∏
i=1

ϕli

]]
|0〉/〈0|

m∏
i=1

ϕ−li ϕli |0〉

= γ

m∑
j=1

〈0|
m∏

i 
=j

ϕ−li ϕli |0〉/〈0|
m∏

i=1

ϕ−li ϕli |0〉. (21)

The above is an exact expression that holds for a system of any size. The main points that lead
to the first equality above are invariance under reflection (〈0|�−qH�q|0〉 = 〈0|�qH�−q|0〉
and H|0〉 = 0. The second equality in (21) above is due to the fact that the double commutator
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�−q,

[ ∑
∂2

∂ϕl∂ϕ−l
, �q

]]
equals 2

∑ ∂�q

∂ϕl

∂�−q

∂ϕ−l
. It may seem that the last expression on the left-

hand side of (21) does not depend on the nonlinear coupling u in the ‘Hamiltonian’. This is
not true of course, because the ground state |0〉 depends on u. To leading order in the size of
the system

〈0|
m∏

i=1

ϕ−li ϕli |0〉 = 〈0|ϕlj ϕ−lj |0〉〈0|
m∏

i 
=j

ϕ−li ϕli |0〉. (22)

The corrections are terms of the same order of magnitude multiplied by a combinatorial factor
of the order of m2 and divided by the volume of the system, the correction is of the relative
order of L2θ−d , that tends to zero for any d (the dimensionality of the system) as the size of
the system tends to infinity. Thus, for a large enough system, the approximation (22) can be
used to yield

µq,rep(l1, . . . , lm) � γ

A

[
3
2n

]θ
( q

nθ

)2−η

. (23)

(Note that qL here is still large in spite of the large m. In fact it is 2πn(1−θ) and therefore
much larger than 1 so that equation (15) is used for the structure factor.) This means, that
there are 1

2 (qL/2π)θ states, at least, for which the expectation values of H are smaller than
γ

A
(3/2)θ

q2−η

(qL/2π)(1−η)θ ≡ ε(q, L). Since η is always smaller than 1 this implies that as the size
of the system tends to infinity, the expectation values of H accumulate at zero for any given
q. Note that so far I have used only the scaling form of the two point function (equation (15))
as the only input conjecture in the proof.

If the representative states above were orthogonal, it would be easy to complete the proof
that the eigenvalues of H corresponding to states carrying momentum q accumulate at zero.
This, however, is not the case. The purpose of the next part of the proof is to show that the set
of representative states, described above, can be used to construct an orthogonal set of states,
by a Grahm–Schmidt orthogonalization procedure, such that the expectation values of H in
the states of that set are identical to leading order in the size of the system to the corresponding
expectation values calculated above. Because of the irreducibility of any set, Sm1 ⊕ Sm2 the
scalar products of pairs of the representative states are given by equation (16). Denote, for
simplicity the many ‘excitation’ representative states by ψm and the smallest and largest m
between nθ and 1.5nθ by ms and ml , respectively. Further denote by max and min the maximal
and minimal values respectively of |(ψi, ψj )| for i 
= j in the range ms � i, j � ml .

The orthogonal set {χm} is obtained by constructing linear combinations of the ψ

χi = ψi +
i−1∑

j=ms

aijψj . (24)

It is not difficult to show that if min can be made as large as we wish compared to
[max]2nθ

/
Anθ

L(2−η)nθ

when the size of the system is increased, aji is given to leading order

in the size of the system by − (ψi ,ψj )

(ψi ,ψi )
for j > i. Use of equations (15) and (16) enables us

to show that the inequality relating min and max can be made to be obeyed for large enough
systems. It is easy to show now that the required inequality relating max and min is obeyed if

θ < (d − 2 + η)/2b ≡ θ0. (25)

This choice of the range of θ ensures that for i 
= j in the range, |(ψi, ψj )| is monotonically
decreasing as a function of i + j , for large enough L. It also ensures that

(χi, χi) = (ψi, ψi) and (χi |Hχi) = (ψi,Hψi) (26)

where relative corrections are at most of the order of [max]2nθ
/⌊

min2 Anθ

L(2−η)nθ ⌋
.
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(In fact, it may seem that a weaker condition on θ, θ < (d − 1 + η/2)/2b (η is always
smaller than 2), suffices to obtain equation (26) but since the monotonicity of |(ψi, ψj )| as a
function of (i + j) simplifies matters considerably, the somewhat more stringent limitation is
used.) This implies that to leading order in L, the expectation values of H in the orthogonal
set {χm} are the same as the expectation values in the many ‘excitation’ states. Note that
in the proof of the existence of the orthogonal set that is ‘close’ to the non-orthogonal set
of many excitations I used the input scaling form of the many point correlation functions
(equation (17)). The final stage of the proof is to show that the accumulation of the
eigenvalues of the ‘Hamiltonian’ follows. Assume that this is not the case. If so since the
eigenvalues ofH are positive, there exists a finite gap, �q, independent of the size of the system
(for large enough L) and there is only a finite number M (independent of the size of the system)
of eigenstates of H with energies in the gap that tend to zero with the size of the system.
Denote these normalized eigenstates by �i and the corresponding eigenvalue by λi

q and any
normalized vector belonging to the subspace spanned by eigenstates of the ‘Hamiltonian’ with
energies larger than the gap by ��. Consider next the states {χi} with expectation values of
the Hamiltonian smaller than ε(q, L). I will express each of these states by

χi =
∑

bij�j + bi�
i
�. (27)

The expectation value µi corresponding to χi is bounded by

µi �
∑

|bij |2λj
q + |bi |2�q. (28)

On the other hand µi < ε(q, L). The conclusion is that |bi |2 <
ε(q,L)

�q
. Therefore, the

projections of the states χi on the M-dimensional space spanned by the �i are almost
normalized and almost orthogonal to each other. The last result is impossible of course
in view of the enormous number of states χi with expectation values less than ε(q, L). This
completes the proof.

The proof given here concerns only the accumulation of eigenvalues of the FP operator
at zero in the thermodynamic limit. This result is exact and general under the conjecture that
the established results for equilibrium correlation functions at the transition are correct. It is
thus a proof of the existence of a necessary condition for slower than exponential decay at the
transition point. It has no bearing however on the actual form of decay whether exponential,
stretched exponential or power law. The form of the decay depends on certain matrix elements
that are problem specific. I hope to discuss this in future work. An interesting question that
has been raised a number of times in connection with the above description is whether it
is relevant to the glass transition. The first tendency is to say that it is irrelevant, because
in the glassy state translational symmetry is broken and that was used heavily in the above
description. Furthermore, the glassy phase is supposed not to be in equilibrium and the above
treatment is based on equilibrium dynamics. It seems, however, that there is some chance of
success by considering the liquid phase close to the transition. I hope to come back to this in
the near future.
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